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Abstract—Despite the tremendous success of wavelet based im-
age regularization, we still lack a comprehensive understanding of
the exact factor that controls edge preservation and a principled
method to determine the wavelet decomposition structure for
dimensions greater than 1. We address these issues from a
machine learning perspective by using tree classifiers to underpin
a new image regularizer that measures the complexity of an
image based on the complexity of the dyadic tree representations
of its sublevel sets. By penalizing unbalanced dyadic trees less,
the regularizer preserves sharp edges. The main contribution
of the paper is the connection of concepts from structured
dyadic tree complexity measures, wavelet shrinkage, morpho-
logical wavelets, and smoothness regularization in Besov space
into a single coherent image regularization framework. Using
the new regularizer, we also provide a theoretical basis for the
data-driven selection of an optimal dyadic wavelet decomposition
structure. As a specific application example, we give a practical
regularized image denoising algorithm that uses this regularizer
and the optimal dyadic wavelet decomposition structure.

Index Terms—Wavelet transforms, morphological operations,
image enhancement, multidimensional signal processing.

I. INTRODUCTION AND PRIOR WORK

IN a typical image regularization problem, one seeks to
minimize the sum of two terms. The first is an error metric

measuring the error between the signal estimate f and a noisy
observation f̃ ; the second is a regularization term measuring
the complexity of the estimate f :

minimize ‖f − f̃‖2U + λ‖f‖V . (1)

An important challenge is selecting these measures to preserve
sharp edges and other meaningful high frequency features in
images while also ensuring that (1) can be efficiently solved.
This requires the regularization measure ‖·‖V to tolerate sharp
edges, so that an image f with sharp edges can yield a
low ‖f‖V value and minimize (1). Traditional regularization
methods (e.g. ‖·‖L2

) fail to meet this criterion because the
selected ‖·‖V is agnostic to the pixel locations and the edge
structure of f [1].

The conventional solution to the above challenge is through
wavelet-based methods [2]–[4], in which ‖·‖V is the l1 norm
of the wavelet coefficients. This approximates the Besov
norm in Besov space [5]–[8]. Despite the huge success and
popularity of such methods, we still lack (a) a comprehensive
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understanding of the exact factor that controls edge preser-
vation and (b) a principled method to determine the wavelet
decomposition structure for dimensions greater than 1.

We address these issues from a machine learning perspective
by using tree classifiers [9]–[11] to underpin a new image
regularizer. In our framework, ‖·‖V measures the complexity
of an image based on the complexity of the dyadic tree repre-
sentations [12] of its sublevel sets. The unbalanced structure
of these dyadic trees is key to edge preservation. The main
contribution of the paper is the connection of concepts from
structured dyadic tree complexity measures [12]–[15], wavelet
shrinkage [3], [4], morphological wavelets [16], [17] and
smoothness regularization in Besov space [6]–[8] into a single
coherent image regularization framework, in which the degree
of edge preservation is controlled by a single parameter s. The
theoretical connections provide intuitive ways to understand
this parameter. The framework also exploits the structural
flexibility of trees to define and adaptively select an optimal
“wavelet” decomposition structure in 2D spaces. Hence the
regularization framework supports data adaptive results.

Our approach is inspired by recent developments in dyadic
decision tree regularization [12]–[15] and its application to the
estimation of sublevel sets with sharp boundaries [18], [19].
We extend the regularizer in [18], [19], which only applies to
sublevel sets (i.e. binary valued functions), to a regularizer that
applies to any real valued 2D or higher dimensional signal. To
our best knowledge, this is the first work to use the dyadic
decision tree regularization in a general real valued signal
regularization setting. Our approach focuses on a mathematical
and algorithmic analysis of the proposed framework. This
paper is an integration and significant extension of preliminary
investigations [20], [21]. Specifically, the connection with
Besov space is entirely new, all proofs are more general, and
experimental results are more extensive.

The paper is organized as follows. In Section II, we briefly
review the background of the various approaches that we
will bring together. Using 1D signals, we introduce the new
regularizer in Section III, show its theoretical properties and
connections (Section IV) and introduce effective algorithms
to solve the regularized denoising problem (Section V). With
these 1D preparations out of the way, we extend this regular-
ization method to higher dimensional spaces in Section VI and
apply it to image denoising. We report experimental results in
Section VII and conclude in Section VIII.

II. BACKGROUND

Let’s return to equation (1) and give a more detailed
account. The regularization term ‖·‖V is often associated
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with encouraging “smoothness” of f in some space V . The
particular choice of ‖·‖V thus reflects our prior assumptions on
the regularity of f . Several successful regularization methods
have been extensively studied and are briefly reviewed below.

A. Wavelet and Morphological Wavelet Transforms

Wavelet transforms [2] have been tremendously success-
ful in image denoising applications. For linear orthogonal
wavelets, solving (1) with ‖·‖V being the l0 (resp. l1) norm
of the wavelet coefficients simply requires hard (resp. soft)
thresholding these coefficients (i.e., wavelet shrinkage methods
[3], [4]). Most of the wavelet transforms used are linear, but
there has been recent interest in non-linear extensions [22].
The morphological wavelet transform [16], [17] is a non-linear
wavelet transform that replaces the algebraic operations in the
Haar wavelet transform with max and min operators. This
modification improves the preservation of edges in low resolu-
tion signals. Moreover, like most wavelets, it can be effectively
computed in-place in a dyadic decomposition fashion (i.e.,
it is based on a dyadic tree). In our subsequent theoretical
analysis (Section IV-B) we show that a new regularizer ‖·‖V ,
constructed using tools developed for machine learning, has a
natural and tight theoretical connection to the morphological
Haar wavelet. Our use of the morphological wavelet is thus a
tight consequence of linking a natural regularizer in machine
learning to signal denoising.

B. Smoothness: Total Variation and Besov Space

It has also been of interest to determine what is the best
smoothness space V (and norm ‖·‖V ) for natural images.
One possible choice is bounded variation space and the total
variation norm [1], which measures the total change in a
signal: ‖f‖TV = ‖5f‖L1 . This allows occasional jumps in
the signal (sharp edges) but penalizes frequent oscillations.

An alternative smoothness space is Besov space. For any
1D function f with a finite support Ω, we first define the
modulus of continuity with parameter t > 0 as:

wn(f, t)Lp = sup
|h|≤t

(‖∆n
hf‖Lp(Ωh,n)), (2)

in which ∆n
h is a n-th order difference operator defined by

∆hf(x) = f(x) − f(x − h) and ∆n
hf(x) = ∆n−1

h f(x) −
∆n−1
h f(x−h). Ωh,n = {x ∈ Ω, x−kh ∈ Ω, k = 0, 1, . . . , n}.

The Besov space Bsp,q is then defined as

Bsp,q =
{
f : f ∈ Lp and (2sjwn(f, 2−j)Lp)j≥0 ∈ lq

}
. (3)

Here n is an integer larger than s. This space is associated
with the following Besov seminorm:

|f |Bs
p,q

=
∥∥(2sjwn(f, 2−j)Lp)j≥0

∥∥
lq
, (4)

and the following Besov norm:

‖f‖Bs
p,q

= ‖f‖Lp + |f |Bs
p,q
.

For more detailed discussion on Besov space, we refer
readers to the introductions in [5], [6], [8], and the books
of Triebel (e.g. [23]). Here we simply point out that in
Besov space Bsp,q , the parameters p, q, s all indicate levels

of smoothness and such smoothness is a good mathematical
representation for the “smoothness” in natural images. In
particular, when p < 2, it tolerates the discrete singularities
in signals corresponding to the sharp edges [2]. Besov space
is the underlying smoothness space for the wavelet shrinkage
method [3], [4], which approximately solves (1) with V the
Besov space B1

1,1 and with ‖·‖V the corresponding Besov
norm [7]. This connection partly explains the success of the
wavelet shrinkage method. Besov space has also been used
in the learning community to study wavelet kernel regression
[24] (with p = 2) and penalized empirical risk minimization
[25] (with p < 2).

C. Regularized Dyadic Decision Trees

To illustrate the relevance of decision trees, [9]–[11], to
image regularization, consider a tree classifier T that divides
a decision space X into disjoint regions X = S ∪ S̄ (binary
classification). Each node of T is a subset of X and leaf nodes
are labeled 1 (in S) or 0 (in S̄). The set S is the union of the
leaf nodes labeled 1. The boundary of S can be regularized by
penalizing a complexity measure Φ(T ) of T . A more (resp.
less) complex tree can yield a boundary that is more (resp.
less) finely structured. Tree complexity is thus related to the
edge structure of its decision region.

In machine learning, penalizing the complexity of a tree
classifier is an important means of controlling overfitting
[26], [27]. Various complexity measures have been proposed
for this purpose since Breiman’s seminal “Classification and
Regression Trees” (CART) [10], in which tree complexity
is measured by the number of leaf nodes. Scott and Nowak
proved that dyadic decision trees are asymptotically optimal
in the minimax sense when solved using such regularization
[13]. However, this complexity measure is agnostic to tree
shape. Trees with the same number of leaf nodes can still have
notably different complexities [28], [29]. Recently, Scott and
Nowak proposed a “spatially adaptive” complexity measure
that prefers unbalanced trees and enables a more detailed
local fit to a decision boundary. Theoretically, this complexity
measure has better convergence properties [14], [15], and
has been successfully applied to the estimation of sublevel
sets [18], [19]. In effect, a complexity measure that favors
unbalanced trees allows a finer representation of the edge
structure of the decision region S.

III. A NEW IMAGE REGULARIZER

We now introduce our new image regularizer. We first
define a general parameterized complexity measure for dyadic
decision trees; then use this to define the new complexity
measure (i.e., regularizer) for real valued functions.

A. Measuring the Complexity of a Dyadic Decision Tree

Let T be a dyadic decision tree on the interval [0, 1). By this
we mean that: (a) the root node of T is [0, 1) and (b) every non-
leaf node [x1, x2) of T has two children obtained by cutting
the interval into halves, [x1, (x1+x2)/2) and [(x1+x2)/2, x2).
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Let π(T ) denote the set of leaf nodes of T and consider the
complexity measure

Φ(T ) =
∑

L∈π(T )

φ(|L|). (5)

Φ(T ) penalizes each leaf node L ∈ π(T ) according to its size
|L|. In our setting, if L ∈ π(T ) is at level k, then |L| = 2−k,
k ≥ 0. So Φ(T ) is parameterized by the sequence {αk}∞k=0

with αk = φ(2−k). We assume that α0 = 0, i.e., a single node
tree has complexity 0.

This parameterized definition covers many previously pro-
posed complexity measures as special cases. For example,
setting αk = 1, k > 0, yields the complexity measure of
CART [10]: Φ(T ) = |π(T )|. Under this setting, trees (b)
and (c) in Figure 1 have the same complexity. On the other
hand, setting αk =

√
2−k(C1 + C2k) yields the complexity

measure of [18], [19] that favors unbalanced trees, and setting
αk = k2−k yields the example-weighted average tree depth
measure proposed in [28]. In these cases, tree (c) is measured
as less complex than tree (b). However, instead of fixating on
a specific sequence, we simply require {αk}∞k=0 to satisfy the
following two conditions.
Condition A (Preference for Simplicity):

∀k ≥ 1, αk >
1

2
αk−1.

This ensures that splitting a node increases complexity:
φ(2−k)+φ(2−k) > φ(2−(k−1)). So Φ(T ) favors simpler trees.

Condition B (Preference for Unbalanced Trees):

∃c > 0, ε > 0 s.t. ∀k ≥ 1 : αk < cεk.

This requires {αk}∞k=1 to decay geometrically. So deeper
nodes in the tree receive less weight. This gives a tree the
flexibility to make a detailed fit around a sparse set of edges
which in turn gives rise to an unbalanced tree structure. This
connection is explored further in Appendix A.

We often use the following re-parameterization:

α0 = 0, (6)
αk = 2−(1−s)k, k ≥ 1. (7)

The scalar s ∈ [0, 1] is the most important parameter in
the paper. It encodes the characteristics of the complexity
measure and controls the preservation of edges and high
frequency features. Conditions A and B dictate that s > 0
and s < 1, respectively. s = 1 yields the complexity measure
Φ(T ) = |π(T )| of CART [10]. Reducing s decreases the cost
of deeper nodes and this in turn reduces the cost of unbalanced
dyadic trees.

B. Measuring the Complexity of a Real valued Function

From the simple illustration in Section II-C it is clear how
to use Φ(T ) to measure the complexity of a binary valued
function. We now extend this to a complexity measure of
bounded real valued functions. The basic idea is to measure
the complexity of a real valued function by integrating the
complexity of the indicator functions of its sublevel sets.

(Root) α0 = φ(1) = 0

(a)! (b)! (c)!

α1 = φ(
1

2
)

α2 = φ(
1

4
)

α3 = φ(
1

8
)

Fig. 1. Illustration of the complexity measure (5). Leaf nodes (gray circles)
at level k are weighted by αk = φ(2−k). The complexity measures for tree
(a)-(c) are 2α1, 4α2, and α1+α2+2α3, respectively. Tress (b) and (c) have
the same number of leaf nodes but can have different complexity measures.

To formally describe this process, let f : [0, 1) 7→ R be
a given bounded signal. Fix an integer m > 1. For each
threshold γ, we represent the sublevel set Sγ = {x ∈ [0, 1) :
f(x) ≤ γ} using a dyadic tree of maximum depth m as
follows. The root node (height 0) of the tree is [0, 1). If a
node, [x1, x2), of height i (i < m) is not entirely inside or
outside Sγ , (i.e. [x1, x2)\Sγ 6= φ, Sγ ∩ [x1, x2) 6= φ), we split
the node into halves ([x1, (x1 +x2)/2) and [(x1 +x2)/2, x2)).
We repeat this process until either every node is entirely inside
or outside Sγ or is at depth m. Nodes at depth m are not split.
Denote the resultant finite tree as Tmγ . The complexity of Sγ
is measured by the complexity of its dyadic tree representation
Φ(Tmγ ) defined in (5). Now define the complexity of f as an
integral over γ of the complexities of its sublevel sets:

Em(f) =

∫
Φ(Tmγ )dγ. (8)

By the assumption α0 = 0, Φ(Tmγ ) = 0 if γ is outside the
range of f . Therefore the integral is always finite because
Φ(Tmγ ) is finite and f is bounded.

IV. PROPERTIES AND CONNECTIONS

We now study the theoretical properties of the complexity
measure (8) and its connections to dynamic range, wavelet-
based methods, and Besov space. In particular, we show that
the parameter s controls edge preservation and discuss how it
manifests itself in these different domains.

A. Connection to Dynamic Range

Em(f) can be written as a weighted summation of the
dynamic ranges of f on a series of intervals. For 0 ≤ k <
m, 0 ≤ l < 2k, define the following intervals:

Ik,l = {x : 0 ≤ 2kx− l < 1}. (9)

The dynamic range of f on Ik,l is:

dk,l(f) = sup
x∈Ik,l

f(x)− inf
x∈Ik,l

f(x). (10)

We then have the following result.

Theorem 1.

Em(f) =

m−1∑
k=0

2k−1∑
l=0

(2αk+1 − αk)dk,l(f). (11)

The general proof is included in Appendix B. A brief proof
for continuous functions f is in Section 4 of [20].



XIANG AND RAMADGE: EDGE PRESERVING IMAGE REGULARIZATION BASED ON MORPHOLOGICAL WAVELETS AND DYADIC TREES 4

In the right hand side of (11), the inner summation∑2k−1
l=0 dk,l(f) sums the dynamic ranges of f on the 2k small

intervals Ik,l, 0 ≤ l < 2k. This summation is a coarse measure
of the oscillation of f at resolution 2k. By Theorem 1, Em(f)
measures this oscillation in f across multiple resolutions.

Corollary 1. Em(f) is a convex function over bounded
f : [0, 1)→ R if and only if 2αk+1 − αk > 0, 1 ≤ k < m.

Corollary 1 is proved in Appendix C. The corollary connects
the convexity of Em(f) to Condition A, the preference for
simplicity. When using Em(f) to regularize a convex objec-
tive, the regularized optimization problem will be convex if
and only if Φ(T ) prefers simpler trees - a natural minimal
requirement for a complexity measure.

B. Connection to Morphological Wavelet Coefficients

In this subsection we assume that the signal of interest
has maximum resolution N = 2m, i.e., it is constant on the
intervals Im,l, defined in (9), for 0 ≤ l ≤ N−1. To emphasize
this, we use fm, instead of f , to denote the signal.

Any fm can be mapped to a vector in Ψm ∈ RN by
setting Ψm(l) = fm(x)|x∈Im,l

. We can then compute a
wavelet decomposition of Ψm. For example, the Haar wavelet
decomposition is computed as:

Ψk(l) =
Ψk+1(2l) + Ψk+1(2l + 1)

2
, 0 ≤ l ≤ 2k − 1, (12)

Wk,l = Ψk+1(2l)−Ψk+1(2l + 1), 0 ≤ l ≤ 2k − 1. (13)

In the above formulae, k takes decreasing values from m− 1
to 0, and indexes a chain of approximation signals Ψk ∈ R2k

with decreasing resolution (and hence decreasing length). Wk,l

are the wavelet coefficients.
We will now introduce a pivotal theorem that connects

Em(fm) with a specific kind of wavelet transform called
the morphological Haar wavelet transform. This nonlinear
transform replaces the averaging operator in (12) by either
a max (denoted ∨) or min (denoted ∧) operator. The max
version of the transform is:

Ψ∨k (l) = Ψ∨k+1(2l) ∨Ψ∨k+1(2l + 1), 0 ≤ l ≤ 2k − 1, (14)

W∨k,l = Ψ∨k+1(2l)−Ψ∨k+1(2l + 1), 0 ≤ l ≤ 2k − 1, (15)

and the min version is:

Ψ∧k (l) = Ψ∧k+1(2l) ∧Ψ∧k+1(2l + 1), 0 ≤ l ≤ 2k − 1, (16)

W∧k,l = Ψ∧k+1(2l)−Ψ∧k+1(2l + 1), 0 ≤ l ≤ 2k − 1. (17)

We have the following important equivalency result:

Theorem 2. Let fm be a 1D signal of maximum resolution
2m and {W∨k,l}, {W∧k,l} be defined by (14)-(17). Then

Em(fm) =

m−1∑
k=0

2k−1∑
l=0

αk+1

(
|W∨k,l|+ |W∧k,l|

)
. (18)

A brief proof of Theorem 2 can be found in Section 4 of
[20]. A complete, detailed proof is included in Appendix D.

Regularization using Em(fm) controls the complexity of
the sublevel sets of fm by penalizing Φ(Tmγ ). By Theorem

2, this is equivalent to a weighted l1 norm of the morpholog-
ical wavelet coefficients of fm. Thus our new regularization
method is fundamentally connected to the l1 wavelet shrinkage
method proposed by Donoho and Johnstone [3], [4], and
the sparse representation based image denoising methods in
general. In these methods sparsity is not limited to any specific
wavelet type. However, from Theorem 2 we see that structured
dyadic tree regularization used in machine learning yields a
connection to the sparsity of the coefficients of one specific
wavelet: the Haar morphological wavelet. Theorem 2 also
offers a key insight on how level-adpative wavelet thresholding
impacts edge preservation. Consider the parameterization (6),
(7). At s = 1, all wavelet coefficients are weighted equally:
αk = 1, 1 < k < m. This corresponds to traditional
wavelet shrinkage (same threshold for every coefficient), and
the traditional tree complexity measure Φ(T ) = |π(T )|. As
s decreases (0 < s < 1), Φ(T ) allows trees to adapt their
resolution to the edges of the signal. By Theorem 2, this
corresponds to wavelet-thresholding with decreasing thresh-
olds on higher resolution coefficients and suggests that this
level-adaptive shrinkage will improve the resultant resolution
around edges. However, when αk decreases so fast that s = 0
(i.e. αk = αk−1

2 ), the scheme fails since Φ(T ) no longer
prefers simpler trees. Empirical examples for various values
of s are given in [20].

C. Connection to Besov Space

In computing Em(f) we are approximating the sublevel
sets of f with trees of maximum depth m. As m → ∞, the
trees grow in order to approximate the sublevel sets of f as
accurately as possible. Using the parameterization (6), (7), we
now show that if the resultant sequence {Em(f)} converges,
then it converges to an upper bound of the Besov seminorm
determined by s.

Theorem 3. Let f : [0, 1) → R be any bounded function. If
the sequence {Em(f)}∞m=1 converges, then f is in the Besov
space Bs1,1 defined in (3), and

C1|f |Bs
1,1
≤ lim
m→∞

Em(f) (19)

where |f |Bs
1,1

is defined in (4) and C1 is a constant.

This theorem is proved in Appendix E.
Besov space and Besov norms have emerged as useful

mathematical tools for modeling the smoothness of natural
images [6]–[8]. In this light, Theorem 3 shows a connection
between Em(f) and Besov space and gives assurance of the
proposed new regularizer’s performance on a important class
of image denoising tasks.

Finally, we provide some consistency results on finite sam-
pling. For a signal f defined on a continuous interval [0, 1), we
compute Em(·) on a “sampled” version of f . The following
theorem shows that as the sampling resolution goes to infinity,
the result of a sampled computation converges to E∞(f). This
theorem is proved in Appendix F.

Theorem 4. Let f : [0, 1) → R be a bounded function in
Bs1,1 (0 ≤ s ≤ 1) and assume that {Em(f)}∞m=1 converges.
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For a given m, let Xm = {xl | 0 ≤ l < 2m, xl ∈ Im,l} be
a set of sample points and fXm(x) be the sampled signal:
fXm(x) = f(xl) for x ∈ Im,l. We have

lim
m→∞

sup
Xm

Em(fXm
) = lim

m→∞
Em(f). (20)

Moreover, if f is also σ-Hölder continuous for some σ > s
(i.e. ∃C s.t. |f(x)− f(y)| ≤ C|x− y|σ,∀x, y ∈ [0, 1)), then

lim
m→∞

Em(fXm
) = lim

m→∞
Em(f). (21)

This is stronger than (20) because now Em(fXm
) converges

to E∞(f) regardless of the choice of sample points.

D. Edge Preservation and Parameter s
The connections established in this section can be sum-

marized as follows. The continuous parameter s ∈ [0, 1]
controls edge preservation. For s = 1: αk = 1 (k ≥ 1);
nonroot leaf nodes of the tree regularizer are penalized equally;
and morphological wavelet coefficients are penalized equally
across scales (18). As s is decreased: αk = 2−(1−s)k decays
exponentially in k ≥ 1; deeper leaf nodes of the tree regu-
larizer are penalized less; and less penalty is applied to finer
scale morphological coefficients (18). A smaller s this allows
better representation of edges. Correspondingly, s fine tunes
the smoothness space Bs1,1. For s1 < s2, Bs21,1 ⊂ Bs11,1. So
as s decreases, E∞(·) connects to the Besov seminorm in a
larger Besov space Bs1,1 and the convergence of {Em(f)}∞m=1

implies that f is contained in this larger Besov space. This
indicates a less stringent smoothness requirement.

V. REGULARIZED DENOISING PROBLEMS

We now solve the regularized denoising problem (1) using
the complexity measure Em(·) as a regularizer. Since this
involves computation, throughout the section we assume that
each signal fm has maximum resolution N = 2m, and is
represented as a vector in RN : fm(l) = f(x)|x∈Im,l

. Given a
noisy observation f̃m, we consider the denoising problem:

min
f̂m∈RN

‖f̂m − f̃m‖22 + λEm(f̂m). (22)

This problem can be reformulated as a Second Order Cone
Programming (SOCP) problem. To see this, we first introduce
some dummy variables. Let ε = f̂m− f̃m have l-th component
εl, l = 0, . . . , N − 1, and e =

∑N−1
l=0 ε2

l = ‖f̂m − f̃m‖22. We
relax this equality to the following inequality

e ≥
N−1∑
l=0

ε2
l ⇐⇒ (

e+ 1

2
,
e− 1

2
, ε0, . . . , εN−1) ≥K 0, (23)

where ≥K denotes a second order Lorentz cone inequality.
Equation (23) is a standard form SOCP constraint. Now con-
sider the perfect binary tree T with: 1) Root node I0,0 = [0, 1);
2) Each non leaf node Ik,l has children Ik+1,2l and Ik+1,2l+1,
corresponding to the left/right halves of Ik,l respectively; 3)
Leaf nodes are the intervals Im,l, l = 0, . . . , N − 1. For every
edge b ∈ T connecting parent Ip with child Ic, define:

δ∨b = (max
x∈Ip

f̂(x)−max
x∈Ic

f̂(x)),

δ∧b = − (min
x∈Ip

f̂(x)−min
x∈Ic

f̂(x)).

These variables are nonnegative:

∀b ∈ T : δ∨b ≥ 0, δ∧b ≥ 0, (24)

and for any path P in T from Ik,l to a leaf node L:

εL+f̃m|L+
∑
b∈P

δ∨b = max
x∈Ik,l

f̂(x) (25)

εL+f̃m|L−
∑
b∈P

δ∧b = min
x∈Ik,l

f̂(x) (26)

These dependancies can be captured by considering just “left”
and “right” paths in T. The left path PUk,l from non-leaf node
Ik,l always proceeds to left children, ending at leaf node
LUk,l = Im,θUk,l

. Similarly, its right path PVk,l, always proceeds
to right children, ending at leaf node LVk,l = Im,θVk,l

. By (25),
(26), for 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ 2k − 1:

εθUk,l
+f̃m|LU

k,l
+
∑
b∈PU

k,l

δ∨b = εθVk,l
+f̃m|LV

k,l
+
∑
b∈PV

k,l

δ∨b , (27)

εθUk,l
+f̃m|LU

k,l
−
∑
b∈PU

k,l

δ∧b = εθVk,l
+f̃m|LV

k,l
−
∑
b∈PV

k,l

δ∧b . (28)

We can now prove the following theorem.

Theorem 5. The solution of the SOCP problem:

minimize e+ λ

m−1∑
k=0

∑
edges b∈T that
start at depth k

αk+1 (δ∨b + δ∧b ) ,

subject to (23), (24), (27) and (28).

(29)

yields the solution of the denoising problem (22).

Proof: Let JSOCP (resp. JD) denote the optimal value of
(29) (resp. (22)). For a solution f̂m of (22), {δ∨b , δ∧b , εl, e : b ∈
T, l = 0, . . . , N − 1} satisfy (23)-(28). Hence JSOCP ≤ JD.
Now let {δ∨b , δ∧b , εl, e : b ∈ T, l = 0, . . . , N − 1} be a
solution of (29). Let f̂m = f̃m + ε and Ŵ∨k,l, Ŵ

∧
k,l denote the

morphological wavelet coefficients of f̂m. Optimality implies
(23) is an equality, i.e., e = ‖f̂ − f̃m‖22. Optimality and
constraints (24), (27), (28), imply that (25), (26) hold. From
this it follows that for any non-leaf node Ik,l and edges bU , bV
that connect to its children, one of δ∨bU , δ∨bV must be 0. Hence
δ∨bU +δ∨bV = |δ∨bU−δ

∨
bV
| = |Ŵ∨k,l|. Similarly δ∧bU +δ∧bV = |Ŵ∧k,l|.

So JSOCP = ‖f̂−f̃m‖22+
∑m−1
k=0

∑2k−1
l=0 αk+1(|Ŵ∨k,l|+|Ŵ∧k,l|) =

‖f̂ − f̃m‖22 +Em(f̂m) (Theorem 2). Therefore JD ≤ JSOCP.
Problem (29) is a SOCP of size O(N), where N is the

number of signal samples, and can be solved efficiently with
existing SOCP toolboxes. Some examples are given in [20].

We will not dwell on the 1D case further. Instead, we now
proceed to generalize these results to higher dimensions. This
leads to the application of the proposed regularizer to the
problem of image denoising.

VI. EXTENSION TO HIGHER DIMENSIONAL SPACES

The major challenge in extending the regularizer to higher
dimensions is the non-uniqueness of the dyadic splitting. For
example, consider representing sublevel set Sγ = {x ∈
[0, 1)d : f(x) ≤ γ} in Rd, d > 1, using a dyadic tree. We
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start with root node [0, 1)d and if a node is not entirely inside
or outside Sγ , we split the node. But now there are d distinct
ways to do the splitting; which one should we choose?

A similar issue arises in computing a multidimensional
Haar wavelet or morphological Haar wavelet transform. This
recursively takes two signal points and computes the approx-
imating signal Φ and wavelet coefficient W (see (12)-(17)).
To order these computations for multidimensional signals, it is
necessary to fix a dyadic structure for the computation, e.g. for
images, we might do rows first then columns. However, fixing
a dyadic structure a priori is usually an arbitrary decision.

We first establish our previous results on a fixed dyadic
structure in d dimensions (Section VI-A). Then we pose and
solve the problem of finding the optimal dyadic structure for a
given signal (Section VI-B). Finally, we propose a denoising
framework that jointly optimizes the dyadic structure and the
signal estimation (Section VI-C). From a wavelet perspective,
this provides a theoretical basis for the data-driven selection
of a wavelet decomposition structure.

A. Generalization Under A Fixed Dyadic Structure

We first define a full dyadic tree and use it to represent a
fixed dyadic structure. A binary tree T is called a full dyadic
tree on [0, 1)d with resolution 2m if it satisfies the following:

P1: The root node of T is J0,0 = [0, 1)d.
P2: Any non-leaf node Jk,l has a color c ∈ {1, 2, . . . , d}. Its

children, Jk+1,2l and Jk+1,2l+1, are congruent hyperrectangles
obtained by cutting Jk,l with the d−1 dimensional hyperplane
through the center of Jk,l and perpendicular to axis-c.

P3: All leaf nodes are hypercubes of side length 2−m.
By P3, T has height dm and by P2, each hyperrectangle at

depth k has volume |Jk,l| = 2−k (0 ≤ k ≤ dm). When d = 1,
every node has only one color and T reduces to the dyadic
partition tree of the 1-D interval [0, 1) defined in Section V.

Assume that a signal of interest, denoted by fm, is bounded
and has maximum resolution 2m in each dimension. So fm
is constant on the hypercubes Jdm,l, l = 0, . . . , 2dm − 1. For
each threshold γ, represent the sublevel set Sγ = {x ∈ [0, 1) :
fm(x) ≤ γ} using a dyadic tree, rooted at J0,0 = [0, 1)d.
Whenever a node J is not entirely inside or outside Sγ , we
split J in exactly the same way that J is split in T. Denote the
resulting tree as Tmγ . Then following (8), for a fixed dyadic
structure T, the complexity of fm on T is:

Em,T(fm) =

∫
Φ(Tmγ )dγ.

This is finite since the range of fm and Φ(Tmγ ) are finite.
Analogous to (10), we define the dynamic range of fm on

hyperrectangle Jk,l as

dk,l(fm) = max
x∈Jk,l

fm(x)− min
x∈Jk,l

fm(x).

Notice that dk,l(fm) is implicitly dependent on T although for
notational simplicity we have omitted T from the subscript.

Define the Haar morphological wavelet transform on the
fixed dyadic structure T as follows. The highest resolution
signal Ψdm takes the values on leaf nodes Jdm,l: Ψdm(l) =
fm(x)|x∈Jdm,l

. Then we move up the tree T and associate

every non-leaf node Jk,l with Ψ∨k,l,Ψ
∧
k,l,W

∨
k,l and W∧k,l, cal-

culated according to (14)-(17). W∨k,l and W∧k,l are the Haar
morphological wavelet coefficients of fm computed on the
fixed dyadic structure T. Notice that these are also implicitly
dependent on T although T is not in the subscript.

With this setup, we now establish the following general-
izations of Theorems 1 and 2 in higher dimensional spaces.
Theorems 3 and 4 are not generalized because there is no
known extension of the Besov norm in higher dimensional
spaces that is dependent on the dyadic decomposition order.

Theorem 6.

Em,T(fm) =

dm−1∑
k=0

2k−1∑
l=0

(2αk+1 − αk)dk,l(fm).

Theorem 7.

Em,T(fm) =

dm−1∑
k=0

2k−1∑
l=0

αk+1

(
|W∨k,l|+ |W∧k,l|

)
.

To prove these two theorems, one can simply transform fm
to the 1D signal Ψdm(l) = fm(x)|x∈Jdm,l

and then apply the
1D results (Theorem 1 and Theorem 2) to Ψdm.

B. Choosing the Best Adaptive Dyadic Structure

For any signal fm, all results in Section VI-A hold for any
fixed T. Now we ask a new question: How do we choose
the best dyadic structure T? From a signal representation
perspective, a good T should yield simple representations
of the sublevel sets of fm, i.e., the complexity measure
Em,T(fm) will be lower if the structure of T is better adapted
to the structure of fm. Hence we seek:

Topt ∈ arg min
T

{Em,T(fm)} . (30)

We can solve this problem by dynamic programming. The
basic idea is to search for the optimum splitting recursively in
a bottom-up fashion. For a hyperrectangle B in a full dyadic
tree at depth kB , define a “sub-partition tree” TB as any
binary tree with root node B that satisfies properties P2 and
P3 in Section VI-A. If k indexes the depth in the full dyadic
tree, then s(k) = k− kB is the depth in the sub-partition tree
TB . The morphological Haar wavelet coefficients Ws(k),l of
fm are calculated on TB . Define the “partial loss” of TB as:

L(TB) =

dm−1∑
k=kB

2s(k)−1∑
l=0

αk+1

(
|W∨s(k),l|+ |W

∧
s(k),l|

)
. (31)

with L(TB) defined to be 0 for kB = dm.
The dynamic programming algorithm recursively solves for

the optimal sub-partition tree TB,opt ∈ arg minTB
L(TB) and

stores the solutions in dictionary DkB as entry:

a(B) =

(
max
x∈B

fm, min
x∈B

fm, TB,opt, L(TB,opt)

)
.

For leaf nodes B, TB,opt is a single node B and L(TB) = 0.
This trivial solution is stored into dictionary Ddm. For a non-
leaf node B, assume the color of TB’s root node is c, this
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1: For all leaves B store the following in the dictionary Ddm:
a(B) = (fm(x)|x∈B , fm(x)|x∈B , {B}, 0).

2: for k = dm−1, . . . , 1, 0 do
3: Initialize Dk = φ.
4: for all a(U) ∈ Dk+1 do
5: for c = 1, 2, . . . , d do
6: if The c-th dimensional side length of U is 1 then
7: continue
8: end if
9: V ← The unique hyperrectangle that could be the

sibling of U under a parent node B of color c.
10: B ← U ∪ V .
11: Retrieve entries a(U) and a(V ) from Dk+1:

a(U) = (maxU , minU , TU,opt, L(TU,opt)),
a(V ) = (maxV , minV , TV,opt, L(TV,opt)).

12: maxB ← max{maxU ,maxV },
minB ← min{minU ,minV },
TB,opt ← {TU,opt�B�TV,opt},
L(TB,opt)← g(a(U), a(V ))

13: Retrieve the existing entry for B from Dk:
a′(B) =

(
max′B , min′B , T

′
B,opt, L(T′B,opt)

)
.

14: if a′(B) = φ or L(TB,opt) < L(T′B,opt) then
15: Replace a′(B) with the entry:

a(B) = (maxB , minB , TB,opt, L(TB,opt)).
16: end if
17: end for
18: end for
19: end for
20: Retrieve a([0, 1)d) from D0 and output T[0,1)d,opt.

Fig. 2. Dynamic programming algorithm to solve (30).

cuts B into hyperrectangles BcU and BcV . Connecting the sub-
partition trees rooted at BcU and BcV with new root node B
yields tree TB . We represent this as TB = {TBc

U
� B �

TBc
V
}. L(TB) can be recursively calculated as:

L(TB) = L(TBc
U

) + L(TBc
V

)+

αkB+1(|max
Bc

U

fm −max
Bc

V

fm|+ |min
Bc

U

fm −min
Bc

V

fm|). (32)

The RHS of (32) can be calculated using just the entries
a(BcU ) and a(BcV ) in DkB+1. So we denote the RHS of (32)
as g(a(BcU ), a(BcV )). Now we can solve for L(TB,opt) by
minimizing (32) over c:

L(TB,opt) = min
c=1,2,...,d

g(a(BcU ), a(BcV )).

Using this approach, once we have completed the dictionary
DkB+1, the sub-partition trees for all hyperrectangles at depth
kB can be easily computed. Thus we can search for the best
sub-partition trees using a bottom-up dynamic programming
algorithm. This is described in detail in Figure 2.

To analyze the complexity of this algorithm, we note that∑dm
k=0 |Dk| = (2m+1−1)d. This holds since any hyperrectan-

gle is the direct product of d 1D intervals, for each of which
there are 2m+1 − 1 distinct choices. The dictionary Dk can
be implemented so that the search and insert operations are

O(log |Dk|). Hence the time complexity of the algorithm is:

|Ddm| log |Ddm|+ d

dm−1∑
k=0

|Dk+1|C(log |Dk|+ log |Dk+1|)

< dC ′(

dm∑
k=0

|Dk|) log(

dm∑
k=0

|Dk|) = O(md22d2md).

Assume it takes b bits to represent a float number. Then each
entry of Dk takes log(2m+1 − 1)d + b+ b+ log ddm + b bits
to store. Hence the space complexity of the algorithm is:

(log(2m+1 − 1)d + log ddm + 3 ∗ b)
dm∑
k=0

|Dk|

<C(d(m+ 1)+dm log d)(2m+1−1)d < O(md log d2d2md).

From these expressions we deduce that if fm is a 2D image
with N pixels, then both complexities are O(N logN).

C. A Joint Denoising Algorithm Framework

Finally, we consider the joint optimization problem:

(f̂ , T̂) ∈ arg min
(f,T)

{
||f − f̃ ||22 + λEm,T(f)

}
, (33)

where λ > 0 is a regularization coefficient. In this formulation,
we want to denoise the signal f̃ while jointly determining the
dyadic structure best adapted to the denoised signal. Hence the
regularizer Em,T(f) controls the complexity of the denoised
signal under its best representation. This is a complex problem
due to the non-linearity of Em,T(f) and the combinatorial
choices of T. To solve the problem, we propose to iterate
between optimizing T̂ with f̂ fixed and f̂ with T̂ fixed:

T step: T̂ ← arg min
T

{
||f̂ − f̃ ||22 + λEm,T(f̂)

}
, (34)

F step: f̂ ← arg min
f

{
||f − f̃ ||22 + λEm,T̂(f)

}
. (35)

(34) can be solved using the dynamic programming algorithm
discussed in Section VI-B. (35) can be solved using the
SOCP method discussed in Section V. Acting together these
algorithms seek to iteratively solve (33).

VII. EXPERIMENTAL RESULTS

While this paper is focused on extending and making
connections between various signal regularization frameworks,
we nevertheless feel it is important to examine the empirical
performance of the denoising scheme that results. We do so
using two experiments.

In the first experiment, we use a synthetic image to explore
the effect of the regularizer Em,T(f) under different s and
T on a typical image denoising scenario in which we are
given a noisy observation f̃ (PSNR=24dB) of the synthetic
image (Figure 3 top panel). For three different images f : 1)
the original signal, 2) an edge smoothed version of the original
signal, and 3) the noisy observation, we plot log(‖f − f̃‖22 +
4Em,T(f)) − 4s as s ranges over the interval [0, 1] and T
ranges over three dyadic structures. The three dyadic structures
T are: the vertical decomposition (first decompose into single
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The Original Image (Vertical Decomposition)

The Edge Smoothed Version (Vertical Decomposition)

The Noisy Observation (Vertical Decomposition)

(Thicker Lines) Horizontal Decompositions

(Thickiest Lines) Adaptive Decompositions

Fig. 3. The image denoising loss function ‖f − f̃‖22 + λEm,T(f) (λ = 4)
for three images f , three T and s ∈ (0, 1]. This demonstrates the importance
of choosing an appropriate s and using an adaptive dyadic structure T.

columns), the horizontal decomposition (first decompose into
single rows), and the adaptive decomposition that minimizes
Em,T(f). In Figure 3, groups of curves displayed with the
same line style correspond to the same image f ; groups of
curves displayed with the same line width correspond to the
same T. The pairwise intersections of the three curves for the
same T (same line width) form a triangular region. For the
values of s defining the lower leg of this triangular region, the
original signal has the lowest total loss. However, if s is too
large, the loss function prefers the edge smoothed image. This
is why conventional algorithms (s = 1) blur edge features. On
the other hand, if s is too small, Em,T(f) allows complex trees
and the loss function prefers the noisy observation. The results
also show that using adaptive dyadic structures yields a better
signal representation. The complexity measure Em,T(f) is
reduced when the dyadic structure T is changed from vertical
to horizontal and then to adaptive. Also, the aforementioned
triangle has the largest base and the largest area when using
the adaptive dyadic structure, suggesting a wider range of
preferable s and more robust edge preservation.

In a second experiment, we evaluate our algorithm’s de-
noising performance in terms of PSNR on 9 test images in
Figure 4. Each test image is corrupted with Gaussian noise
(input PSNR = 10dB). First we compare the performance of
various wavelet methods. These use spatially local information
(at various scales) to accomplish denoising. Specifically, we
compare: (A) 2D wavelet hard thresholding (2DWh). (B)
1D wavelet hard thresholding (Wh). To do this, we first trans-
form the image into an 1D signal using a fixed dyadic structure
T. We tried 3 fixed T denoted by (c), (r) and (m) [(c): column-
wise decomposition, (r) row-wise decomposition, and (m): a
mixed column-row alternating decomposition.] (C) 2D wavelet

ID 2DWh Wh (T) (35) (T) (33) (s) TV ISKR BM3D-σ
1 19.9 20.2 (c) 20.4 (c) 24.8 (0.8) 18.9 21.4 27.1
2 16.8 16.2 (m) 16.9 (m) 18.1 (0.7) 17.5 17.5 19.7
3 20.4 19.2 (m) 19.2 (m) 22.1 (0.9) 20.3 20.7 23.7
4 15.5 15.6 (m) 16.1 (m) 16.1 (0.9) 15.8 15.4 15.8
5 22.4 22.2 (m) 23.0 (m) 23.9 (0.9) 23.2 23.3 24.2
6 20.6 20.2 (m) 21.2 (m) 21.7 (0.9) 21.3 21.8 22.2
7 21.1 20.7 (m) 21.6 (m) 21.9 (0.9) 21.7 22.1 22.6
8 23.7 23.4 (m) 23.4 (m) 25.2 (0.9) 24.5 25.7 27.1
9 19.9 19.0 (m) 19.8 (m) 21.0 (0.9) 20.2 21.9 24.1

Fig. 4. The denoising performance of different algorithms on 9 test images.
The original images are numbered from 1 (top left) to 9 (bottom right). Each
image is corrupted with Gaussian noise with input PSNR=10dB. The PSNR
(in dB) of each algorithm’s output is shown in the table, along with the best
fixed dyadic structure T and parameter s. Soft thresholding algorithms (C),(D)
are always worse than their counterparts in hard thresholding (A),(B) and
therefore are not shown in the table. Below the table, in the first and second
row we show the denoising results from patches in image 3 and 9. From left
to right we show: the noisy image, denoised images using our method (33),
ISKR and BM3D-σ. In the third row we show the denoising results on a patch
of image 1 with s = 0.6, 0.7, 0.8, 0.9 in our formulation (33) respectively.

soft thresholding (2DWs). (D) 1D wavelet soft thresholding
(Ws), similar to (B). (E) A non-adaptive formulation (35),
where T is selected to be the best of the three choices in (B).
(F) Our proposed joint denoising formulation (33). For these
methods, we average the denoising results over cycle spinnings
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[30] of shifts (i, j), 0 ≤ i, j ≤ 3.
For benchmark purposes, we also compared with: (G) Total

variation (TV) using the formulation in [1] and a recent fast al-
gorithm in [31]; (H) Iterative steering kernel regression (ISKR)
[32] (these two methods are also spatially local algorithms);
and (I) Block matching 3D with known σ (BM3D-σ). BM3D
[33] is a very competitive spatially-nonlocal algorithm and it
consistently matches the performance of recent new algorithms
such as [34]. For BM3D-σ we give the BM3D algorithm the
true noise level σ. We expect BM3D-σ to outperform state-of-
the-art spatially local methods and to outperform BM3D for
which the σ is not known and has to be estimated.

For all methods we grid-search the parameters (including
wavelet types from db1(Haar) to db5 for (A)-(D), global
smoothing parameter and the number of iterations for (H))
and report the best PSNR.

The results in Figure 4 are very encouraging. In terms of
PSNR numbers, our method (33) has the best performance
among all the wavelet-based algorithms and exhibits competi-
tive performance even when compared to the best state-of-the-
art denoising algorithms. In terms of visual results, our method
offers clear edge preservation and minimum edge artifacts.
However, as expected the nonlocal block matching algorithm
BM3D-σ yields superior results because of its nonlocal nature
and the abundance of homogenous regions throughout the
image (see the first two demonstrated image patches). We
see the importance of using an adaptive dyadic structure
T, since (33) can yield improved PSNR compared to (35).
Moreover, the best s selected by the grid search is lower for
images with more edges (1 and 2). As a specific example,
the visual illustration at the end of Figure 4 shows that for
image 1, s = 0.8 yields the best denoising result. Larger
s blurs the edges and smaller s tolerates too much noise.
This confirms our previous analysis on the meaning of s,
and supports the hypotheses in [18] that it’s advantageous to
use unbalanced trees to represent sublevel sets in images with
salient edges. The parameter s conveniently controls the level
of edge preservation, but tuning s could result in additional
computation time.

To denoise the first of the three patches shown in Figure 4 on
an Intel Xeon X5570 2.93GHz processor, (A)-(D) take 0.02s
per cycle spinning. (G) takes 0.02s, (H) takes 8.54s and (I)
takes 0.05s. Our algorithm (F) takes 4.09s per cycle spinning,
in which the bottle neck is the 4.02 seconds (98%) spent by the
external SOCP solver SeDuMi [35] to solve (35). At the cost
of a small reduction in performance, we can circumvent this
computation burden by replacing morphological Haar wavelets
with Haar wavelets. This results in at least 50X speed up -
this idea is explored in [36]. Morphological wavelets are used
here for consistency with the theoretical derivations. All the
computation times are reported under the optimal parameters
and do not include the time required for searching for these
parameters (e.g. the s in our method). The average number of
iterations ((34),(35)) is 2.1.

VIII. CONCLUSION

We have introduced a new image regularizer Em,T(f)
which measures the complexity of a signal f based on the

complexity of the dyadic decision trees required to represent
the sublevel sets of f . We established important connections
of Em,T(f) to classification trees, morphological wavelets,
the wavelet shrinkage method, dynamic ranges, and Besov
spaces. These connections help address a central question:
How to control edge preservation in image denoising? We
have shown that the parameter s ∈ [0, 1] in our formulation
is the key factor that controls edge preservation. A smaller s
makes the regularizer more tolerant to edge discontinuities.
We have shown that s is connected to the preference of
unbalanced tree structures in machine learning, to the use of
level-dependent thresholding in wavelet denoising, and to the
scope of the Besov space Bs1,1 as the underlying smoothness
space. While the traditional CART algorithm and conventional
wavelet shrinkage correspond to the single point s = 1, we
demonstrated (theoretically and empirically) that using other
values of s offers advantages in edge preservation and image
denoising. Em,T(f) is dependent on the dyadic decomposition
structure T and we presented efficient algorithms to jointly
estimate the signal and its best adaptive dyadic structure. This
provides a theoretical basis to adaptively determine a dyadic
wavelet decomposition structure for dimensions greater than
1. Experiments show that using an adaptive dyadic structure
can improve denoising performance.

The proposed approach outperforms all existing Haar
wavelet thresholding algorithms that don’t use adaptive trees.
By design, our method uses spatially-local nonlinear aver-
aging. Not surprisingly, state-of-the-art denoising methods
employing joint, spatially-nonlocal averaging yield superior
performance.
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APPENDIX A
EXAMINATION OF CONDITION B

Let Tk+1 be the balanced tree with 2k+1 leaf nodes (k ≥ 1).
Let T ′ be formed by a local modification of Tk+1 as follows:
merge two leaf nodes in T into a size 2−k node, and split
another leaf node in T into two size 2−(k+2) nodes. So Tk+1

and T ′ have the same number of leaf nodes. We say that {αk}
prefers unbalanced trees if for all k ≥ 1, Tk+1 has a higher
complexity than T ′, i.e., no balanced tree is a local stationary
point of the complexity measure. By the construction of T ′,
{αk} prefers unbalanced trees if and only if for each k ≥ 1:

2k+1αk+1 > (2k+1 − 3)αk+1 + 2αk+2 + αk,

⇔ 2αk+1 − αk > 2αk+2 − αk+1,

⇔ βk+1 > βk+2

where βk = 2αk − αk−1 with βk > 0 (by Condition A), for
k ≥ 2. Hence βk < cγk, k ≥ 2, for some constants c > 0, γ ∈
(0, 1) is sufficient to ensue that {αk} prefers unbalanced trees.
Moreover, since βk = 2αk−αk−1, Condition B is sufficient to
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ensure that βk < cγk, k ≥ 2, for some constants c > 0, γ ∈
(0, 1). Hence Condition B is sufficient to ensure that {αk}
prefers unbalanced trees.

APPENDIX B
PROOF OF THEOREM 1

By the definition in Section III-A and α0 = 0:

Φ(Tmγ ) =

m∑
k=1

2k−1∑
l=0

αk[[Ik,l is a leaf node in Tmγ ]]. (36)

According to the rule of constructing Tγ to represent Sγ de-
scribed in Section III-B, the necessary and sufficient conditions
for Ik,l (k ≥ 1) to be a leaf node are:

1) Interval Ik−1,b l
2 c

(the parent node of Ik,l) is not entirely
contained in Sγ nor in [0, 1)\Sγ . And:

2) Either k = m, or that interval Ik,l is entirely contained
in Sγ or in [0, 1)\Sγ .

Since Sγ = {x ∈ [0, 1) : f(x) ≤ γ}, an interval I being
not entirely contained in Sγ nor in [0, 1)\Sγ is equivalent
to γ ∈ {minI}∪ (infI , supI). Here minI is our short hand
notation for minx∈I f(x). The similar notation also applies
to infI and supI . {minI} is defined to be an empty set if
f doesn’t have an attainable minimum value on I . Because
Ik,l ⊂ Ik−1,b l

2 c
, γ ∈ {minIk,l

} ∪ (infIk,l
, supIk,l

) ⇒ γ ∈
{minI

k−1,b l
2
c
} ∪ (infI

k−1,b l
2
c
, supI

k−1,b l
2
c
). Using these argu-

ments we can express the indicator function of whether Ik,l is
a leaf node, [[Ik,l is a leaf node in Tmγ ]], using

[[γ∈{ min
I
k−1,b l

2
c

}∪( inf
I
k−1,b l

2
c

, sup
I
k−1,b l

2
c

)]]−[[γ∈{min
Ik,l

}∪(inf
Ik,l

, sup
Ik,l

)]]

when 1 ≤ k < m, and using

[[γ∈{ min
I
k−1,b l

2
c

}∪( inf
I
k−1,b l

2
c

, sup
I
k−1,b l

2
c

)]]

when k = m. Plugging these into (36):

Φ(Tmγ ) =

m∑
k=1

2k−1∑
l=0

αk[[γ∈{ min
I
k−1,b l

2
c

}∪( inf
I
k−1,b l

2
c

, sup
I
k−1,b l

2
c

)]]

−
m−1∑
k=1

2k−1∑
l=0

αk[[γ∈{min
Ik,l

}∪(inf
Ik,l

, sup
Ik,l

)]]

=

m−1∑
k=0

2k+1−1∑
l=0

αk+1[[γ∈{ min
I
k,b l

2
c

}∪( inf
I
k,b l

2
c

, sup
I
k,b l

2
c

)]]

−
m−1∑
k=0

2k−1∑
l=0

αk[[γ∈{min
Ik,l

}∪(inf
Ik,l

, sup
Ik,l

)]]

=

m−1∑
k=0

2k−1∑
l=0

(2αk+1 − αk)[[γ∈{min
Ik,l

}∪(inf
Ik,l

, sup
Ik,l

)]].

Integrating this equation over γ and using∫
[[γ∈{min

Ik,l

}∪(inf
Ik,l

, sup
Ik,l

)]]dγ = dk,l

gives us equation (11) in Theorem 1.

APPENDIX C
PROOF OF COROLLARY 1

The sufficiency part is obvious using the convexity of sup
and − inf . For necessity, constructing the following signals:

f1(x) =

{
1 if x ∈ ∪j=1,2,...,2kIk+1,2j−1,
0 otherwise.

f2(x) =

{
1 if x ∈ Ik+1,0 ∪ (∪j=2,3,...,2kIk+1,2j−1),
0 otherwise.

The average of the two functions f̄(x) = 1
2 (f1(x)+f2(x)) is:

f̄(x) =


1
2 if x ∈ Ik+1,0 ∪ Ik+1,1,
1 if x ∈ Ik+1,2j−1, j = 2, 3, . . . , 2k,
0 otherwise.

If Em(·) is convex, then we have 2Em(f̄) < Em(f1) +
Em(f2), which yields 2αk+1 − αk > 0.

APPENDIX D
PROOF OF THEOREM 2

We use dk,l as a shorthand notation for dk,l(fm). By
definition (14)- (17) and the fact that fm is constant on Im,l:

Ψ∨k (l) = max
x∈Ik,l

fm(x) = sup
x∈Ik,l

fm(x)

Ψ∧k (l) = min
x∈Ik,l

fm(x) = inf
x∈Ik,l

fm(x)

dk,l = sup
x∈Ik,l

fm(x)− inf
x∈Ik,l

fm(x) = Ψ∨k (l)−Ψ∧k (l)

=Ψ∨k+1(2l) ∨Ψ∨k+1(2l + 1)−Ψ∧k+1(2l) ∧Ψ∧k+1(2l + 1)

=
1

2
(Ψ∨k+1(2l) + Ψ∨k+1(2l + 1) + |Ψ∨k+1(2l)−Ψ∨k+1(2l + 1)|)

−1

2
(Ψ∧k+1(2l) + Ψ∧k+1(2l + 1)− |Ψ∧k+1(2l)−Ψ∧k+1(2l + 1)|)

=
1

2
dk+1,2l +

1

2
dk+1,2l+1 +

1

2

(
|W∨k,l|+ |W∧k,l|

)
.

⇒ 2dk,l−dk+1,2l−dk+1,2l+1 = |W∨k,l|+|W∧k,l|. (37)

On the other hand, starting from Theorem 1, we have:

Em(fm) =

m−1∑
k=0

2k−1∑
l=0

2αk+1dk,l −
m−1∑
k=0

2k−1∑
l=0

αkdk,l

=

m−1∑
k=0

2k−1∑
l=0

2αk+1dk,l −
m−1∑
k=0

2k+1−1∑
l=0

αk+1dk+1,l

(k ← k + 1 on the 2nd term and using α0 = 0, dm,l = 0)

=

m−1∑
k=0

2k−1∑
l=0

αk+1(2dk,l − dk+1,2l − dk+1,2l+1)

=

m−1∑
k=0

2k−1∑
l=0

αk+1

(
|W∨k,l|+ |W∧k,l|

)
(Using (37)).
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APPENDIX E
PROOF OF THEOREM 3

We only need to establish the following bound:

C1

m−1∑
j=0

2sjw1(f, 2−j)L1 ≤ Em(f)

Because if this is proved, then taking m → ∞ yields the
conclusion of the theorem. To prove this bound, we first prove
that for a fixed j:

w1(f, 2−j)L1 ≤ 4

j∑
k=0

2k−1∑
l=0

2−jdk,l. (38)

Since w1(f, 2−j)L1 is upper-bounded by d0,0, (38) holds for
j = 0, 1, 2. For j ≥ 3, divide [0, 1) into these intervals:

Hk,l =

[
l + 1

2

2k
− 1

2j
,
l + 1/2

2k
+

1

2j

)
,K = [0,

1

2j
)∪[1− 1

2j
, 1),

where k = 0, 1, . . . , j−2, l = 0, 1, . . . , 2k−1. These intervals
are not overlapping. Consider an arbitrary h with |h| ≤ 2−j .
For all x ∈ Hk,l, both x and x− h are in the interval Ik,l. So

‖∆1
hf‖Lp(Ωh,1) =

∫ min(1+h,1)

max(h,0)

|f(x)−f(x− h)|dx

≤
j−2∑
k=0

2k−1∑
l=0

∫
Hk,l

|f(x)−f(x− h)|dx+

∫
K

|f(x)−f(x− h)|dx

≤
j−2∑
k=0

2k−1∑
l=0

|Hk,l|dk,l+|K|d0,0

=

j−2∑
k=0

2k−1∑
l=0

2× 2−jdk,l + 2× 2−jd0,0 ≤ 4

j∑
k=0

2k−1∑
l=0

2−jdk,l.

This is true for any |h| ≤ 2−j . Therefore taking the supremum
sup|h|≤2−j proves (38). Now summing over j on (38):

m−1∑
j=0

2sjw1(f, 2−j)L1 ≤ 4

m−1∑
j=0

j∑
k=0

2k−1∑
l=0

2sj2−jdk,l

=4

m−1∑
k=0

m−1∑
j=k

2k−1∑
l=0

2−(1−s)jdk,l ≤ 4

m−1∑
k=0

∞∑
j=k

2k−1∑
l=0

2−(1−s)jdk,l

=4

m−1∑
k=0

2k−1∑
l=0

2−(1−s)kdk,l
1− 2−(1−s) =

1

C1

m−1∑
k=0

2k−1∑
l=0

(2αk+1 − αk)dk,l.

This proves the bound with C1 = (2s−1)(2−2s)
4×2 .

APPENDIX F
PROOF OF THEOREM 4

Because fXm
(x) is a sampled version of f , we have

dk,l(fXm
) ≤ dk,l(f) for any Ik,l. Using Theorem 1 we have:

∀m,Xm : Em(fXm
) ≤ Em(f). (39)

On the other hand, for any given m, the evaluation of
Em(f) =

∑m−1
k=0

∑2k−1
l=0 (2αk+1 − αk)dk,l(f) depends on all

the 2(2m−1) supremum and infimum values of f on intervals

Ik,l. For any given ε, we can choose 2(2m−1) corresponding
anchor points so that the function value on each point is within

ε
2(2m−1) of the corresponding supremum/infimum value. There
exists an integer n so that interval In,l contains at most one
such anchor point. Therefore we can choose sample points set
X̃n to contain the anchor points. So we have

∀m, ε : ∃n and X̃n, s.t.: En(fX̃ ) ≥ Em(fX̃ ) ≥ Em(f)− ε.

This, combined with (39), yields (20).
To prove (21) under σ-Hölder continuity, we will first prove:

∀m,Xm, ε : Em(fXm) ≥ Em(f)− ε− 4C × 2(s−σ)m. (40)

This is because for any interval Ik,l we can find x1, x2 ∈ Ik,l
s.t. |f(x1)−f(x2)| ≥ dk,l(f)− ε

2m−1 . Denote x1 ∈ Im,l1 , x2 ∈
Im,l2 (l1, l2 could be equal). Let xl1 and xl2 be the two sample
points in Xm that are in Im,l1 and Im,l2 respectively. We have:

dk,l(fXm
) ≥ |fXm

(xl1)− fXm
(xl2)| = |f(xl1)− f(xl2)|

≥|f(x1)− f(x2)| − |f(x1)− f(xl1)| − |f(x2)− f(xl2)|

≥dk,l(f)− ε

2m − 1
− C|x1 − xl1 |σ − C|x2 − xl2 |σ

≥dk,l(f)− ε

2m − 1
− 2C2−σm.

Taking the summation
∑m−1
k=0

∑2k−1
l=0 (2αk+1−αk) yields (40).

Taking the limit on (40), combined with (39), yields (21).
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